If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+14a-25=0
a = 2; b = 14; c = -25;
Δ = b2-4ac
Δ = 142-4·2·(-25)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{11}}{2*2}=\frac{-14-6\sqrt{11}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{11}}{2*2}=\frac{-14+6\sqrt{11}}{4} $
| 4(6x-7)-(3x-5)=4₩ | | 7x+3x-10=70 | | y−3.8=14.7 | | 2a^2+14a-27=0 | | 10x+44=12x-13 | | -22-8h=94 | | -5.2=k/8 | | 94=8h−-22 | | 119=-3+2(8r-3) | | -2(x-3)=-(x-11) | | 3(2+6x-8(x-5=4(3x+2 | | 5(x-7)=3x+15 | | 2a^2+20a-52=0 | | 2(4x-3)2x=2(7+5)+2x | | ?=2m+10 | | 2-(4x-3)=10 | | w/5-9=-4 | | 2x-3=7x=23 | | 2(4x-3)2x=2(7+5) | | y+45/9=-3/5 | | -6m+12=-6m+10 | | y=-7+13 | | -35=-3x+8+5 | | 0.4^(x-1)=2x+20 | | 4n=2(2-3) | | 3.4=b+4.2 | | 3(x+2(-4(x+1)+5=5(x+3)-8 | | 3×(3x-9)=63 | | 0.5(8+4)=12-c | | 2(x-3)+5x=5(2x+1) | | 34/9+f=262/5 | | 3x-12=3(x-2)+1 |